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Abstract We study a (l+l)-dimensional nonlinear Schrijdinger equation, which is invariant 
under dilation and special conformal bansformation, in addition to spacetime translations and 
Galileo boost. The behaviour of a soliton solution to this equation, in an external field which 
represents a linear repulsive 01 a harmonic restoring force, is investigated. Explicit solutions are 
presented. Inthe former case, the soliton will go to infinity, withits size increasing exponentially 
with time and, thus, finally collapse. In the latter case, the solution is periodic in time, showing 
that the soliton binds to the extemal force. The binding energy is quantized semiclassically by 
the Bohr-Sommerfeld procedure. In both cases, the centre of the soliton mows in the same 
way as a classical paxticle. The nonlinear term in this Schrijdinger equation leads Lo a three- 
body contact interaction after second quantization. The quantum-mechanical three-body wave 
equntion in configuntion space is com$etely solved. 

1. Introduction 

Recently, a gauged nonlinear Schrodinger theory was put forward by Jackiw and Pi which 
describes non-relativistic matter interacting with a Chem-Simons gauge field in (2+1) 
dimensions [l]. This theory admits conformal symmetries (including dilation invariance and 
special conformal invariance) in addition to the conventional spacetime symmetries, which 
include spacetime translations, rotation and Galileo boost. Non-topological soliton solutions 
carrying electric charge as well as magnetic flux, called Jackiw-Pi solitons, were explicitly 
obtained in this theory. The behaviour of these solitons in external electromagnetic fields 
was studied by several authors [ 2 4  For uniform magnetic field and harmonic restoring 
(or linear repulsive) electric field, separately imposed [Z, 31 or combined 141, explicit time- 
dependent solutions are available via time-dependent coordinate transformations. Such 
time-dependent coordinate transformations were originally used in the study of some 
linear Schrodinger equations, especially for timedependent harmonic oscillators [5]. The 
applicability of these coordinate transformations to the Jackiw-Pi solitons interacting with 
external fields essentially depends on the conformal symmetries of the Jackiw-Pi theory. 

Without coupling to the Chern-Simons gauge field, the field equations in the Jackiw-Pi 
theory just reduce to the nonlinear Schrodinger equation 
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for the matter field @. This is of course much simpler than the original coupled equations. 
All the symmetries mentioned above are still admitted. If some solution, of this equation 
can be found, its behaviour in external fields can also be realized by the same method used 
for the Jackiw-Pi solitons. The knowledge of how solitons behave in external fields is 
important if they are to be applied to condensed-matter physics. However, equation (1.1) 
is of interest in its own right. Unfortunately, physically useful solutions of this equation 
have not been discovered at present, as far as we know, though the equation is simpler 
than that interacting with the Chern-Simons field. In view of this fact, a (I+l)-dimensional 
counterpart of this equation becomes interesting. In (Icl) dimensions, equation (1.1) takes 
the form 

1 
ia,@ = -%a:@ - g(@*@)@. (1.2) 

This is the well known nonlinear Schrodinger equation which was solved many years ago 
[6] .  However, this equation does not admit conformal symmetries except for the trivial case 
g = 0. If these symmetries are emphasized, then equation (1.2) is not the (l+l)-dimensional 
counterpart of equation (1.1) and, hence, does not interest us. In order to reinstate these 
symmetries in ( l i l )  dimensions, the nonlinear term in equation (1.2), which is cubic in @, 
has to be modified. It is the purpose of this paper to study such a modified equation in 
(1+1) dimensions, the nonlinear term of which is quintic in 9. It reads 

1 
2m iat@ = --a;@ - 3g(@*@)z@. (1.3) 

This equation admits all the symmetries mentioned before, except rotation invariance which 
is meaningless in (1+1) dimensions. A somewhat more general nonlinear Schrodinger 
equation of the form 

(1.4) 1 2  i&+ = --v @ -go@ - g l ( @ * @ ) @  - gz($*@)'@ 2m 

was previously studied [7], but in (3+1) dimensions. By the substitution @ + e'SO'@, (1.4) 
becomes 

1 
ia& = -%v2@ - gd@*@)$ - gz(@*+)2@. (1.5) 

Thus, without loss~of generality, one can set go = 0. In (1+1) dimensions, (1.5) reduces to 
(1.2) for gz = 0, and to (1.3) for gl = 0. Lie symmetries of equation (1.4) were studied in 
detail in [7], and classical solutions were investigated there using group-theoretical methods. 
It turns out that the equation admits Galileo symmetries, including spacetime translations, 
rotations and Galileo boosts. For either gl = 0 or gz = 0 it also contains a dilation 
invariance. However, this dilation can keep J ~ T  I,P@ invariant for neither gl = 0 nor for 
g2 = 0 in (3+1) dimensions. For this reason, a special conformal symmetry does not exist 
in (3cl) dimensions in either case. A special conformal symmetry exists for gz = 0 only in 
(2+1) dimensions and for gl = 0 only in (l+l) dimensions. The latter case is to be studied 
in this paper. 

In the next section, we discuss the symmetries of equation (1.3). Though it is a 
special case of (IS), we include this section for two reasons. First, in (Icl) dimensions, 
equation (1.3) admits a special conformal invariance, while in (3+1) dimensions it does not. 
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Second, [71 gives the symmetry generators in differential operators, while we give them in 
conserved integrals. We also give the continuity equations with regard to the densities of 
these conserved generators. This will also make this paper self-contained. In section 3, 
a soliton solution is discussed. It is time dependent, with the time dependence being in 
phase. This is somewhat similar to the previously studied soliton solutions in a relativistic 
charged scalar theory [SI. Though this solution can also be found in [7],  we discuss it in 
some detail since it will be used in the subsequent section. The behaviour of this soliton in 
an external field is investigated in section 4. The external force may be a linear repulsive 
or a harmonic restoring force. Exact solutions are acquired by time-dependent coordinate 
transformations. In the former case, the soliton will generally go to infinity, with its size 
increasing exponentially with time and, thus, finally collapse. However, there also exists a 
special case where the soliton will go to the origin (the maximum position of the external 
potential) and, finally, become a point-like particle. In the latter case, one gets a periodic 
solution, which shows that the soliton binds to the external harmonic restoring force. The 
centre of the soliton oscillates around the origin; its size also makes oscillations. The former 
oscillation has a period twice that of the latter. For both kinds of force, the centre of the 
soliton moves in the same way as a classical particle. The binding energy of the soliton 
with the external harmonic force can be quantized semiclassically by the B.ohr-Sommerfeld 
procedure [9] .  This is done in section 5. In section 6, we discuss a more general nonlinear 
Schrodinger equation, where the nonlinear term is of the (2n+ 1)th order in $. It reduces to 
equation (1.2) for n = 1 and to equation (1.3) for n = 2. A simplesoliton solution, similar 
to the solution discussed in section 3, is easily available. The n = 2 case seems quite 
special in several aspects. Section 7 is devoted to our study of the second quantization of 
the conformally symmetric nonlinear Schrodinger equation. It tums out that the nonlinear 
term in the equation gives rise to a three-body contact interaction after second quantization. 
The quantum-mechanical three-body wave equation in configuration space is completely 
solved in section 8. This wave equation can be separated into two equations, one of which 
governs the motion of the centre of mass of the three particles, the other describes their 
relative motion. The former equation is free, as expected. The latter equation involves the 
interaction and is of essential interest to us. The energy spechum of the relative motion 
turns out to be positive and continuous and, corresponding to a given energy eigenvalue, 
there exist infinitely many eigenfunctions (denumerable). These are stationary waves and a 
scattered s-wave. There also exists a single bound state. 

2. Action and symmetries 

The nonlinear Schrodinger equation studied in this paper arises from the action 

I = d2xL s (2 . la)  

where p(t, x )  is a classical c-number field in (lcl) dimensions, m is a mass parameter and 
g > 0 governs the strength of the nonlinearity. Throughout this paper, we use natural units 
where fi = c = 1. The nonlinear Schrodinger equation derived from (2.1) reads: 

iat* = 
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from which follows the current conservation equation 

atp + a, i  = o 

where 

P = +*$ 

J = G w * a x @  - @.a,v) 1 

are the matter density and current, respectively. The total number (or charge) 

(2.4~) 

(2.46) 

N = ~  d x p  (2.5) s 
is a conserved quantity as a result of (2.3). It generates the phase redefinition + + cia@ 
where 01 is a real number which leaves action (2.1) invariant. It should be remarked that 
the difference between (2.2) and (1.2) lies only in the nonlinear term. 

The system described by (2.1) possesses more spacetime symmetries than that described 
by equation (1.2). First, it admits the conventional invariances under spacetime translations 
and Galileo boost, which are discussed as follows. 

2.1. Time translation 

If @(t,  x )  is a solution of (2.2), so is @'(I, x )  = @(f -a, x ) ,  where II is a constant. The 
corresponding conserved generator is the Hamiltonian 

H =  d x U  (2.6) 

where U is the Hamiltonian density, which is also denoted by Too, the time-time component 
of a non-relativistic energy-momentum tensor: 

s 
1 

2m 
H = T~ = -axq?az@ - g ~ @ - " @ ) ~ .  (2.7) 

The time independence of H is assured by the continuity equation satisfied by Too and the 
energy flux TO': 

a , P  + azTol = o (2.8) 

where 

1 
2m 

T O ]  = --(a,@*a,@ + a,+*a,+). 

Equation (2.8) is a consequence of equation of motion (2.2). 
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2.2. Space translation 

If @ ( t ,  x )  is a solution of (2.2), so is @'(t, x )  = @(t, x - XO), where xo is a constant. The 
conesponding conserved generator is the total momentum 

P =  dxP (2.10) s 
where P is the momentum density, also denoted by TIo, given by 

1 P = T ' O  = p * a X @  -@a&*) = mJ.  (2.1 1) 

Note that TIo # To': the energy-momentum tensor is not symmetric since the system is 
not Lorentz invariant. Again, the equation of motion results in a continuity equation which 
ensures the conservation of P: 

a t P  + 8 , ~ ~ '  = o (2.12) 

where 

(2.13) 

2.3. Galileo boost 

If @ ( t , x )  is a solution of (23 ,  so is 

@'( t ,x )  = exp[imu(x - iu t ) ]@(t ,  x - ut) 

where U is a constant. The corresponding conserved generator G involves the dipole moment 

G = t P - m  dxxp (2.14) s 
and is obtained from the density 

B = r F  - mxp.  

The continuity equation 

(2.15) 

a& + a,(tTll - xP) = o (2.16) 

can be easily verified by using (2.3) and (2.12). The conservation of G is thereby established. 
Next, we discuss the conformal symmetries. These are not admitted by equation (1.2). 
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2.4. Dilation invariance 
If W, x )  is a solution of (2.2), so is 

where a is a non-zero constant. Note that this dilation keeps the charge N invariant. In 
(3+1) dimensions, there also exists a dilation 171, however this dilation does not leave the 
charge invariant. The corresponding generator 

obtained from the density 

D = tu - $XP 
is conserved due to the continuity equation 

(2.17) 

(2.18) 

(2.19) 

which follows from (2.8) and (2.12). 

2.5. Special conformal invariance 

If @(t, x )  is a solution of (2.2), so is 

where a is a constant. It should be pointed out that this invariance does not exist in (3.~1) 
dimensions 171. The corresponding generator K involves the quadrupole moment 

K = t2H - t d x x P  4- i m  J d x x ' p  s (2.20) 

and is obtained from the density 

K = t2U - tx'P + $mx2p 

Conservation of K is ensured by the continuity equation 

1 t 
4m 

--a,p = o  

(2.21) 

(2.22) 

which in turn can be verified by employing (2.3), (2.8) and (2.12) 

K = - t2H + 2 tD + & m / d x x 2 p  

Note that K can also be written as 

(2.23) 

by using (2.17). Then we realize from (2.14), (2.17) and (2.23) that static solutions of (2.2) 
(if any) for which p and P are time independent should have H = 0, P = 0 and D = 0. 
This also holds for the solution presented in the next section, since its p and P are time 
independent, although the solution itself is not. 

Finally, we have discrete symmetries. System (2.1) is invariant under the conventional 
discrete transformations @ ( t , x )  --t @(f,  -2) and @ ( t , x )  + v ( - t , x )  induced by space 
inversion and time reversal, respectively. In addition, we have the following. 
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2.6. Discrete symmetry 

If p(t ,  x )  is a solution of (2.2), so is 

(2.24) 

where a z 0 is a constant. Since a is not dimensionless we do not scale it to unity by a 
dilation. However, because of the dilation invariance, a can be regarded as fixed. Thus 
(2.24) represents a discrete symmetry. Note that this is disconnected with the identity 
transformation. A similar symmetry is also admitted by the Jackiw-Pi theory [4]. 

3. Soliton solution 

A very simple solution to the nonlinear Schrodinger equation (2.2) can be easily obtained. 
Although this solution can also be found in [7]. we discuss it in some detail since it is to 
be used in the next section. The simplest solution of (2.2) may have the form 

@(t, x )  = e'"f(x) (3.1) 

where f ( x )  is a real function and E is a real constant. If E = 0, it becomes a real static 
solution. In this case, however, the solution with finite energy is trivial, as can be seen 
below. Substituting (3.1) into (2.2) yields 

f "  - &l€f -k 6mgf 5 = 0 (3.2) 

where the prime indicates differentiation with respect to argument. From (2.6) and (2.7), 
we see that the solution with finite energy should satisfy 

f ( x )  -+ 0 f ' ( x )  -+ 0 (x  --f CO). (3.3) 

Integrating (3.2) under condition (3.3) yields 

f "  = zmf*(€ - gf4). (3.4) 

Since g 0, (3.4) admits non-trivial solutions only when E > 0. If E < 0, the only solution 
is the trivial one f (x) = 0. When E > 0. integrating (3.4) once again results in the solution 

f ( x )  = fo sech''' - c" TI 
where 

( 3 . 5 ~ )  

(3.5b) 

and xo is an integration constant. This is obviously a soliton solution since the energy 
density, as well as the matter density, is localized at any time (actually time independent). 
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d may be regarded as the size of the soliton, while xo stands for the position of its centre. 
It can be shown for this solution that 

H = O  P = O  D = O  (3.6) 

as pointed out in the last section. The other conserved quantities can be calculated without 
much difficulty: 

G = -mNxo (3.7b) 

(3 .74 

The above results show that the number N and the energy H are independent of the 
parameter d (or E )  involved in the solution. Nevertheless, solutions with different sizes 
can not deform into one another under some small perturbation since this is forbidden by 
the conservation of K. However, stability against arbitrary deformation remains an open 
question. 

The Galileo-boosted solution obtained from (3,l) and (3.5) is given by 

+'(t, 2) = foexp [ ict + imu ( x - -vr )] sech'" [" -:(')] ( 3 . 8 ~ )  

where 

XO(t) = xo + ut.  (3.8b) 

Equation (3.8b) means that the centre of the soliton moves with a uniform velocity v as 
expected. The energy of this solution can be found to be 

H' = -!"U2 2 (3.9) 

where N is given by ( 3 . 7 4 .  Therefore, the soliton has the mass 

M = m N .  (3.10) 

Other solutions of equation (2.2) are currently under investigation. Results will be reported 
elsewhere. Quantization of the above soliton also remains to be studied. 

4. Interaction with external fields 

In this section, we consider the interaction of the field @ with an external force, which is 
described by the following action: 

(4.14 
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The last term in (4.lb) introduces the external force which is either a harmonic restoring or a 
linear repulsive force according to whether .B > 0 or fi  c 0. In the presence of the external 
field, the only conserved quantities are the number N ,  given by (2.5), with p defined by 
(2.4a), and the Hamiltonian 

H = dx -a,$*a,$ - gp3 + -mfix2p I [;m 2 l l  (4.2) 

corresponding to invariances of (4.1) under phase redefinition and time translation. All other 
symmetries except space inversion and time reversal are broken. The equation of motion 
obtained from (4.1) is 

1 1 
2m 2 

iaL$ =~--a,"$ - 3gp2$ + -m@x2$. (4.3) 

The continuity equation regarding p is given by (2.3) where J is still given by (2.4b). 

dilation transformation [2-5] 
Solutions of equation (4.3) can be obtained from solutions of (2.2) by the time-dependent 

(4.44 

(4.4b) 

where A ( t )  is a function to be determined below, the overdot denotes differentiation with 
respect to t and to is an arbitrary constant. Indeed, under transformation (4.4), action (4.1) 
will be changed to 

I = d2x'Cr (4.5a) s 
(4.5b) 

I c' = i$"a;$' - -a;$'*a;$' + gp" 
2m 

if h(t)  satisfies 

A(f) + fih(t) = 0. (4.6) 

Note that (4.5) describes a free system, simply the same as (2.1). Equation of motion (4.3) 
becomes 

1 
2m (4.7) 

under (4.4) with (4.6). This can also be derived from (4.5). Once a solution of (4.7) is 
obtained, one can get a counterpart to (4.3) by the transformation (4.4). We emphasize that 
the applicability of (4.4) to system (4.1) depends crucially on the conformal symmetries 
of the corresponding free system (2.1). For the interaction of equation (1.2) with similar 
external fields, such coordinate transformations do not work. Since a soliton solution of 
equation (4.7) has been obtained in the last section, we are now in a position to study its 
behaviour in the external fields. The two different cases @ < 0 and ,3 z 0 are dealt with 
separately as follows. 

lat$i . I  = --a,"$'- 3gpI2r/l' 
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4.1. f i  e 0 

In this case, the external Force is repulsive. Let 

The general solution of (4.6) is 

h(t) = cle" + cZe+ (4.9) 

where c1 and cz are arbitrary real constants. For convenience, we first discuss the simple 
case where c, = 1 and cz = 0. By choosing to = +CO, we have 

x' = e-yfx (4.10b) 

and the solution obtained from (3.1) and (3.5) (of course with t ,  x replaced by t', x') by 
transformation (4.4) turns out to be 

where 

fo(t) = foe-y'fl 

xo(t)  = xoeYf d ( t )  = deY'. 

(4.12~~) 

(4.12b) 

Since xo(t )  stands for the position of the centre of the soliton, one sees that the soliton 
will go to infinity. The size of the soliton d ( t )  increases exponentially with time. Thus, 
the soliton will finally collapse. The conclusion is independent of the choice cl = 1 and it 
remains correct when c2 # 0 since the first term in (4.9) dominates at large t .  When CI = 0, 
however, things are somewhat exceptional. By the choice cz = 1 and to = -CO, we have 

(4.13~) 

(4.13b) 

and 

q(t, x )  = fo(t) exp (4.14) 

where 

(4.15~) 

(4.1%) 

We see that the soliton will finally become a point-like particle and stay at the origin. 
However, if the Galileo-boosted solution (3.8) instead of (3.1) and (3.5) is used for @'@I, x'), 
the soliton will go to infinity, though it will still finally become a point-like particle. 
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4.2. f l  > 0 

In this case, the external field represents a harmonic restoring force. Let 

f l  =6Jz (w > 0). (4.16) 

The generaI solution of (4.6) is 

h(t) = CI cos ut + cz sin ut (4.17) 

where cI and cz are arbitrary real constants. For simplicity, we choose c1 = 1, cz = 0 and 
take to = 0. We have 

1 
t’ = - tanwt 

0 

X 

cos wt 
x’ = - 

(4.l8a) 

(4.186) 

and 

e@, X) = f o ( t )  exp [ i (: - - - my2) tan w t ]  sech”’ [ ;;@)] (4.19) 

where 

f o  
Jj-EGJ f o W  = ( 4 . 2 0 ~ )  

xo(t)  = xocoswt d( t )  = djcosotl. (4.206) 

We find that both the centre and the size of the soliton oscillate. The former oscillation has 
a period 

(4.21) 

while the latter has period T j 2 .  The maximum value of p also varies periodically with 
time with the same period as d ( t )  such that the number N is time independent (see below). 
Other choices of C I  and cz lead to basically the same pattern of motion. The period of 
the solution is T .  This does not depend on the concrete form of $‘(t‘, x‘) and the specific 
values of cI and q. In fact, solutions obtained by the transformation (4.4) are always 
periodic with period T given by (4.21) when fl  = w2. This shows that solitons bind to the 
external harmonic force. The binding energy can be quantized semiclassically. This will 
be performed in the next section. 

We have pointed out that in the presence of the external field the conserved quantities 
only consist of the number N and the Hamiltonian H .  Their expressions are already given 
in (2.5) and (4.2). respectively. We are now going to evaluate them for the above solutions, 
for either f3 < 0 or 6 > 0. It should be remarked that transformation (4.4) does not change 
the value of N .  Thus, the number is still given by (3 .7~) .  As for the Hamiltonian, the result 
tums out to be 

H = LM(A2 2 + f3hz)(x*)o (4.22) 
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where M is the mass of the soliton given by (3.10) and 

( x  * )o = - Jdrn”p’(x) (4.23) 

where the subscript zero indicates that this is evaluated in the free system (4.5) and, thus, 
p’(x)  is actually determined by the solution (3.1) and (3.5). It is not difficult to find that 

N 

2 r2 2 (4.24) ( x z ) o  = XO + -d . 
4 

In fact, a similar calculation was performed in (3.7~). As a consequence of equation 
(4.6), the Hamiltonian given by (4.22) with (4.24) is time independent, as expected. The 
energies of the solutions obtained in this section can easily be evaluated by substituting 
the corresponding solutions of h(t) into (4.22). For example, solution (4.19) with (4.20) 
corresponds to h ( f )  = C O S O ~  and has energy 

H = -MO* 1 (xi + :d2) . 2 
(4.25) 

In the limit d --f 0 ( E  + +CO), this coincides with the energy of a classical harmonic 
oscillator with frequency O, mass M and amplitude 1x01 (cf (4.20b)). 

To conclude this section, we point out that the centre of the soliton moves in the same 
way as a classical particle. Indeed, in the potential 

V ( X )  = Lmj?x2 2 (4.26) 

a classical particle with mass m obeys the equation of motion 

i + p x  = 0. (4.27) 

It is easy to verify that no(?), given in both (4.12b) and (4.15b), solve (4.27) for j? = -yz. 
while that given in (4.20b) solves (4.27) for j? = wz. Other choices of constants CI and c2 

do not alter this conclusion. 

5. Semiclassical quantization 

In the preceding section, we have obtained the classical solutions of equation (4.3). When 
p > 0, the solution is periodic with period 7‘. This shows that the soliton binds to the 
external harmonic force. The binding energy can be quantized semiclassically by the Bohr- 
Sommerfeld condition 191 

where @ is a periodic solution with period T ,  not necessarily the specific solution (4.19) 
with (4.20), and np is the ‘principal quantum number.’ Using (4.1) and (4.2), equation (5.1) 
leads to the quantization condition for the binding energy Eb: 
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where 

( L ) = - /  l T  d tL  
T o  (5.3) 

and L is the spatial integral of (4.16). Obviously, (L ) ,  as well as L,  depend on the particular 
classical solution. In order to evaluate L,  we substitute (4.3) into (4.1) and obtain 

L = -2g dxp3. (5.4) s 
This cannot be simplified further. Knowledge of specific solutions is necessary for making 
an ultimate evaluation. For the solution obtained in the preceding section, we have the 
result 

where X(t) = ~ C O S W ~ ,  or is given by (4.17) if c] and c2 are not specified. So, we have 

( L )  = - 

(5.5) 

(5.6) 

This is, however, divergent and must be treated carefully. The simplest way to deal with it 
is by making use of (4.4u), which yields 

ZE 
( L )  = - [t‘(T) - f ’ (O) ] .  

2 T G  (5.7) 

This vanishes since t’ is a periodic function o f t ,  which can be seen from (4.18a) and can 
be verified for the more general case. On account of this result, we arrive at 

Eb = npw (5.8) 

where (4.21) has been used. This, indeed, gives the energy levels of a quantum harmonic 
oscillator with frequency w, except that the zero-point energy is not included. 

6. A more general equation 

In this section, we consider a more general nonlinear Schrodinger equation of the form 

1 
ia& = -%a:@ - (n + ljg(@*@)”@ (6.1) 

where n is a natural number. This coincides with equation (2.2) for n = 2 and is basically 
the same as equation (1.2) for n = 1. The equation can be derived from the following 
action. 

I = d2xL (6.74 

(6.u) L = i@*at@ - -ax@*ax@ +g($*@)”+‘. 
1 

2m 

s 
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The Hamiltonian of this system is given by 

System (6.2) is invariant under spacetime translation, Galileo boost, space inversion, time 
reversal and phase redefinition for general n. Conformal symmetries, however, are admitted 
only when n = 2. In this respect, the n = 2 case seems rather special. 

A soliton solution of (6.1), similar to that presented in section 3, can easily be obtained. 
Again, we begin with the ansatz 

+ ( r , x )  = e'"f(x) (6.4) 

where f ( x )  is a real function. For such a simple form of e, equation (6.1) reduces to 

f" - 2 m ~ f  + 2(n + I)mgfz"+' = 0. (6.5) 

Integrating (6.5) with the requirement that f ( x )  + 0, f ' ( x )  + 0 when x + 00, such that 
the energy of the solution is finite, one gets 

f n  = 2mf2(6 - gf2") .  (6.6) 

0 is acceptable as before. Integrating (6.6) once again results in the Since g > 0, only 6 
solution 

f ( x )  = fOsech1ln - [ 71 
where 

(6.7a) 

(6.7b) 

This is obviously a soliton solution and reduces to (3.5) for n = 2. For this solution, one 
has 

(6.8) 

where N is the number defined as before. When n = 2, the number N is independent of size 
d or of E (cf (3.7a)). This is not surprising since, for n = 2, there is a dilation symmetry 
by which the solution can be transformed to the one with E = 1, and N is invariant under 
the dilation. For n > 2, the size d increases with number N ,  which seems natural. For 
n = 1, however, the size of the soliton decreases when the number increases. This perhaps 
implies that there exists some strong attraction between the matter charges. In regard to the 
relation between d and N ,  the case n = 2 also exhibits something special. 

The energy of solution (6.7) can be expressed in terms of N .  In fact, substituting (6.4) 
into (6.3) gives 

N c( 6l/n-l/2 c( dl-2/" 



Conformally symmetric nonlinear Schrodinger equation 245 

Using (6.6), this reduces to 

H = dx (~f' - 2gf2n+2).  s (6.10) 

On the other hand, integrating (6.9) by parts and using (6.5) leads to 

H = dx(-cf'+ngf2"+'). (6.11) s 
Combining (6.10) and (6.11), one arrives at 

(6.12) 

This shows that H > 0 for n > 2 and H < 0 for n = 1, while for n = 2, the energy 
vanishes (cf equation (3.6)). Again we find that n = 2 is a special case. 

For n = 1,  it is easy to find that 

(6.13) 

(6.14) 

It is remarkable that the soliton becomes point-like (d + 0) when N + CO. One may 
expect that in this case the soliton should be very stable against collapse since it possesses 
a negative infinite energy. 

7. The second quantization 

In this section, we turn to the second quantization of system (2.1). We consider a quantum 
field operator 1/1 and its Hermitian conjugate @t, obeying bosonic commutation relations at 
equal times (a time argument of the operators is suppressed in this section): 

[ + ( x ) ,  @(x" = 0 [@. ' (x ) ,  +.'(x')l= 0 (7.la) 

11/1(x), +t(x'N = S ( X  - X ' h  (7.lb) 

Time evolution of these operators is governed by the posited Hamiltonian 

H =  d x ' H  (7 .2~)  

( 7 . 3 )  

s 
1 

2m 
x = -ax@+&+ - g: (1/1t1/113:. 

This is similar to the classical Hamiltonian (2.6) with (2.7). However, ordering of non- 
commutating operators is important in quantum theory, so we have made the normal- 
ordering prescription of putting all +t to the left of @ in (7.2b) and denoted it by colons. 
The Heisenberg equation of motion for @ reads 

(7.3) 
1 

ia,@ = [q, HI = --a:+ - 3g: (@+@)': +. 
2tn 
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This is similar to equation (2.2). It should be remarked that we have assumed the bosopic 
algebra (7.1) to obtain a non-trivial Heisenberg equation. If a fermionic algebra is used, the 
problem is obviously free. From (7.3) and its Hermitian conjugate, the current conservation 
equation follows 

a,p + a,J = 0 (7.4) 

where 

P = $t$ (7.Sa) 

(7.Sb) 
1 

2mi J = -($tax@ - a,@t@) 

are the density and current operators, respectively. Thus, the number operator 

N =  d x p  (7.6) s 
is a conserved quantity. In other words, it commutes with Hamiltonian H .  Therefore, N 
and H may have simultaneous eigenstates. We denote these eigenstates by [ E .  N), where 
E and N are eigenvalues of the operators H and N, respectively: 

(?.la) 

(7.7b) 

We also posit the existence of the 'vacuum' zero state IO), annihilated by 9, 

*(X)IO) = 0 = (Ol$'(X) (7.8) 

and also by N and H 

NIO) = 0 = HIO). (7.9) 

However, operating $t on 10) produces another state and, in particular, we define 

(Ol~(XI)...@(XN)lE,N) =.'&I,...>". (7.10) 

It is clear that exactly N field operators are needed to connect [ E ,  N) to IO). u g ( ~ 1 ,  . . . , X N )  

is the N-body wavefunction in configuration space. As a consequence of its definition (7.10) 
and the commutativity of the operators @, it is a bosonic wavefunction, symmetric under 
position interchange. 

Using equations (7.3) and (?.7)-(7.9), one can work out the Schrodinger equation obeyed 
by the N-body wavefunction U;. Both the one-body and two-body problems turn out to be 
free 

(77.11) ia,uk = E U ~  = --+UE 1 2 1  

2m 

2 2  1 
2m 

ii3& = E u i  = --(a: + (7.12) 
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where al  = a,, etc. The three-body wave equation, however, involves a three-body contact 
interaction 

The general N-body (N > 3) wave equation takes the form 

(7.13) 

(7.14) 

as can be expected on the basis of (7.13). 
The physical meaning of the Schrodinger equations (7.14) which involve three-body 

contact interactions, but without two-body contact interactions, remains to be studied further. 
Nevertheless, the three-body wave equation (7.13) can be completely solved. This will be 
performed in the final section. We also note that the nonlinear term in equation (6.1) leads 
to a (n + 1)-body contact interaction after second quantization. 

8. Three-body wavefunction 

The task of this final section is to solve the threebody wave equation (7.13). Since we 
will deal only with the three-body wavefunction, the superscript in U; will be suppressed. 
The time-dependence of the wavefunction lies in a factor e-iEf as a consequence of the first 
equality in (7.13). In the following, we omit the factor e-iE* in U E  and rewrite equation 
(7.13) as follows: 

HqmuE(x19x2,X3) = EuE(~IJz,-Q) @.la) 

where 

(8.lb) 

is the quantum-mechanical Hamiltonian operator. To solve equation (8.1), we introduce the 
new coordinates 

1 
2m 

ffqm = --(a: + a; + a:) - 6g6(x1 - xZ)8(xz - x3)  

Z = $(XI + xZ +x3) (8.24 

X = & ( T - X 3 )  2 x ,  +xz 

(8.Zc) 

Here z is the centre-of-mass position of the three particles, while x and y give their 
relative positions up to constant factors. The Jacobian determinant of the coordinate 
transformation is 
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rather than -1 because the overall coefficient in ( 8 . 2 ~ ~ )  in 113 instead of l/& In the new 
coordinates (2 ,  x ,  y). H,, takes the form 

(8.3) 

It then becomes clear that the variable z can be separated from x and y. In other words, 
the wavefunction U E  can be factorized 

uE(x11 XZ, x3) = k ( z ) u ( x ,  Y). (8.4) 

Substituting this equation into (8.1) we obtain two equations: 

H&z) = E c ~ c ( z )  

where 

H, = --az 1 2  
6m 

(8.5a) 

(8.5b) 

E = E, + E,.  (8.7) 

Equation (8.5) is the wave equation for the centre of mass of the three particles. This is a 
free problem whose solutions are one-dimensional plane waves. In the following, we mainly 
deal with equation (8.6), which describes the relative motion of the three particles. This is 
equivalent to a two-dimensional stationary Schrodinger equation in a 8 well potential. It 
can be rewritten in the form 

1 
2 m  
-Vzu + Eru = -2&gu(O, O)&(x)s(y) (8.8) 

where V2 is the two-dimensional Laplacian operator. For well-behaved solutions the left- 
hand side of (8.8) is regular everywhere, whereas the right-hand side is singular at the origin 
if u(0,O) # 0. Therefore, self-consistency demands that 

u(0,O) = 0. (8.9) 

The physical implication of this condition is that the three particles are prevented from 
coinciding by the three-body contact interaction. (Note that x = y = 0 corresponds to 
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XI = x2 = x3.) On account of this condition, wave equation (8.6) or (8.8) becomes 
essentially free: 

0% + 2mEru = 0. (8.10) 

Regular solutions of this equation solve wave equation (8.6) if they satisfy demand (8.9). 
In the following, we see that all partial waves satisfy (8.9) except the s-wave. However, a 
solution with u(0, 0) + 0 might be acceptable since the potential is singular at the origin. 
This will need regularization 1101 and a bound state and a scattered s-wave can be obtained. 

In order to solve @.lo), with condition (8.9), we introduce the polar coordinates r ,  6 
on the xy plane such that 

x = rcos.9 y = rsin.4. (8.11) 

In these polar coordinates, equation (8.10) takes the form 

This is solved by 

u(r.  e )  = R(r)e""' U = 0, 1,2, . . . 

with R(r) satisfying 

(8.12) 

(8.13) 

(8.14) 

If E, < 0, regular solutions satisfying (8.9) are not available except for the trivial solution 
R = 0. So, we should have Er > 0. Let 

( k  7 0). 
k2 

E r  = z;;; (8.15) 

The regular solution of (8.14) is 

R(r) = J,(kr) U = 0, 1,2.. . . (8.16) 

where J,(kr) are Bessel functions of the first kind with argument k r .  All these solutions 
satisfy (8.9), except Jo(kr). The case U = 0 needs regularization, and will be treated 
later. Parameter k can take any positive value. So, the energy eigenvalue E, is continuous 
according to (8.15). For agiven k or E,. we have the following solutions to (8.10) satisfying 
(8.9). 

ukv(r, e )  = Ju(kr)e'iYe v = 1,2, . . . . (8.17) 

Normalization factors have not been included in (8.17). It should be pointed out that the 
solutions (8.17) are not bound states, though ukv(r, 8) + 0 when r + 00. They cannot be 
normalized in the  conventional^ way. 

Though solutions (8.17) satisfy (8.10) and (8.9), they are not the final solutions of our 
problem since their property under position interchange remains to be studied. (Note that r 
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and 6 are functions of x and y and, hence, functions of XI, x~ and x3.) We leam from the 
preceding section that the wavefunction u~(x1. x2, x3) must be symmetric under interchange 
of thr. positions X I ,  xz and x) .  According to (8.4). U ( X ,  y )  or u(r, 0) should also be symmetric 
under the above position interchange, since U&) is automatically symmetrized (cf (8 .2~)) .  
Therefore, our task is to symmetrize u(x ,  y )  or u(r, e). 

From (8.3). (8.5b) and (8.6b), we have 

Hr = Hqm - H,. (8.18) 

On the other hand, from (8.lb), one can easily realize that Hqm is symmetric under position 
interchange. That Hc is also symmetric is obvious. Thus, H, is symmetric under position 
interchange. On account of this fact, if 

u(x1 ,xz .x3 )  = U(X(XI,XZrX3), Y ( X l ,  x2. x3)) 

is a solution to (8.6), so is u(x~p, xzp, x 3 p ) ,  where (XIP. xzp, x3p) is any permutation of 
( X I ,  xz ,  x3).  Therefore, the symmetrized solution is simply 

us(xI, xZ,X3) = ~ ~ ( x l P , x Z P ,  x3P) (8.19) 
P 

multiplied by some appropriate overall factor to satisfy some normalization condition. The 
summation in (8.19) is over all possible permutations. Thus, it contains six terms. From 
(8.2), we see that the interchange (XI, XZ, x3) -+ ( X Z ,  X I ,  x3) corresponds to (x, y )  + 
( x ,  - y )  or (r, e )  4 ( r ,  -0). On the basis of (8.17) and this relation, the symmetrized 
solution reads 

&(r, e) = ; [ ~ , ( k r )  cos we + (xz  cf x3) + ( X I  cf x3)l (8.20) 

where the factor 4 is included for the following convenience. In order to work out the 
second term in (8.20), we denote 

(XI,.;..;) (XI,X3,X2) 

and define 2 ,  n', y' and r', 6' in the same way as (8.2) and (8.11). Then, we find that 

8 1  
y ' =  --x + 2 y  

2 

(8.21~) 

(8.21b) 

(8.22) 

We remark that relative Hamiltonian (8.66) is actually invariant under (8.21). For the third 
term in (8.20), we denote 

e , b  = ---e. 
3 

r' = r 

(x;,  x i ,  x i )  = (x3, x2, XI) 
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and follow the same method that led to (8.22). We arrive at 

(8.23) r N = r  0 = - - 0 .  ,, 4n 
3 

Incorporating all these results, we obtain 

This vanishes for both w = 31 - 1 and v = 31 - 2 where 1 is a natural number. For w = 31, 

(8.24) 

and replacing the subscript U(= 31) 

&(r, 8 )  = &(kr) cos 310 1 = 1,2, . . ... 
By mutiplying (8.24) by a normalization factor 
by 1, we obtain the final solutions 

U;. (r, 0 )  = - 331 (kr)  cos 318 1 = 1,2, . . . . (8.25) 

These are symmetric under position interchange. Given an energy eigenvalue E, or a k, we 
have infinitely many eigenfunctions uZ(r, 0) numbered by 1. (In the following, we have still 
one more solution.) The eigenfunctions are orthogonal to one another. The wavefunctions 
corresponding to different energy eigenvalues (or different k’s) are also orthogonal to one 
another. In fact, solutions (8.25) satisfy the orthonormal relation 

J d m r d r  Jd- d0 u;.(r, 8)&,(r, 8)  = S(k - k’)SIp. 

L 

(8.26) 

Finally, we return to the case v = 0. First, we can find a bound state by regularization 
[IO]. Introduce the Fourier transform of U ( T )  

(8.27) 
1 

@(p) = z;; / dv u(?-)e-@‘ 

with the inverse transform 

U ( T )  = - dp@(p)e’pp (8.28) 
2x ‘ I  

where T = ( x ,  y )  and p = ( p x ,  pr). The Fourier transform of (8.8) reads: 

(8.29) 

where B = -E, is the bound state energy to be calculated. Integrating (8.29) over p and 
using (8.28), one obtains 

(8.30) 
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The integral on the left-hand side is divergent. Introducing a cut-of€ at p = A, we obtain 

For large A, this yields 

(8.31) 

(8.32) 

Since g is an unrenormalized coupling constant, it can be regarded as depending on A 
in such a way that B remains finite when A + CO. In this way, we obtain an arbitrary 
bound-state energy. Replacing the 6 potential by a square well of radius, ro, one can also 
find the bound-state wavefunction [IO]. It is not continuous at the origin when ro + 0, as 
expected. 

Now we are in the position to solve the case U = 0. Again, we transform (8.8) to 
momentum space and get 

where k is defined in (8.15). The scattering solution of (8.33) can be chosen as 

(8.33) 

(8.34) 

where q = 0". Introducing the cut-off A once again and integrating (8.34) over p .  for large 
A, we have 

Using (8.32) to solve (8.35), we get 

u(0,O) = - [,n$+in]-'. 
f i m g  

(8.35) 

(8.36) 

Substituting (8.36) into (8.34), we obtain the solution 

(8.37) 
1 

p2 - k2 - iq '  @(P) = 2?rS(p, - k)6(p,) + 2 

The corresponding solution in coordinate space is 

(8.38) 

This consists of a plane wave plus a~scattered s-wave. Indeed, when r -+ CO, we have 

The solution involved in (8.38), and linearly independent of (8.17), is 

(8.39) 

(8.40) 

This is the solution corresponding to U = 0. It depends only on r and, thus, is automatically 
symmetrized. Therefore, it is readily a solution to our problem of relative motion, which is 
linearly independent of (8.25). It should be remarked that u ~ ( 0 )  # 0. 



Conformally symmetric nonlinear Schrodinger equation 253 

Acknowledgments 

The author is indebted to Professor Qi-zhou Chen and Professor Guang-jiong Ni for their 
continuous encouragement. This work was supported by the Science Research Foundation 
of Zhongshan University and by the Doctoral Foundation of the National Education 
Commission of China. 

References 

I11 
I21 
131 
r41 

171 

[SI 
161 

I81 
I91 

[lo1 

Iackiw Rand Pi S-Y 1990 Phys. Rev. &e. 64 2969; 1990 Phys Rev. D 42 3500 
EzawaZF,HoltaMandIwaz&i A 1991 Phyys.Rev.D 44452: 1991 Phvs.Rev. Lett. 67411: 1991 67 1475 
lackiw Rand Pi S-Y 1991 Phys. Rev, Len. 67 415; 1991 Phys. Rev. D 
Lin Q:G 1993 Pkys. Rev. D 48 1852 

2524 

Takagi S 1990 Pi&. Theor. Phys. 84 1019 
Zakharov V E and Shabd A B 1971 Z h  Ehp. nor. Fir. 61 118 (Engl. transl. 1972 Sov. Phys-JETP 34 62) 
Gagnon Land Wintemitz P 1988 J. Phys. A: Moth Gen. 21 1493; 1988 22 469 
Gagnon L, G"aticos B, R m m i  A and Winternitz P 1989 3. Phys. A: Math Gen. 22 499 
Friedberg R, Lee T D and Sirlin A 1976 Phys. Rev. D 13 2739 
Jackiw R 1977 Rev. Mod. Phys. 49 681 
Rajaraman R 1982 Solitons ond Insrantons (Amsterdam: North-Holland) 
Jackiw R 1991 MAB Big Memorial Volume ed A Ali and P Hoodbhoy (Singapore: World Scientific) 
Huang K 1982 Quark, Leptons, and Gauge Fields (Singapore: World Scientific); 1989 Inf. J. Mad Phys. A 

Dong S 1 and Yang C N 1989 Rev. Math. Phys. 1 139 
4 1037 


